

Semester: IX

Integrated M.Sc. Mathematics Subject :060090904 Advanced Operation Research Academic Year: 2019-20

Teaching Schedule

Course Objectives: To Identify and develop Linear programming problem of operational research models from the verbal description of the real System.

Course outcomes: Upon completion of the course, students shall be able to

CO1: define and formulate non-linear programming problems for one and several variables.

CO2: develop mathematical skills to analyse and solve dynamic programming and models arising from a wide range of applications.

CO3: solve queening theory and inventory models using appropriate techniques and optimization solvers, interpret the results obtained and translate solutions into directives for action.

CO4: recognize the applications of, basic methods for, and challenges for goal programming and geometric programming.

CO5: formulate a real-world problem as a mathematical programming model.

CO6: know principles of construction of mathematical models of conflicting situations and mathematical analysis methods of operations research.

Unit Non-I	Unit	No. of Lect. (s) Prog	Topics ramming [18 hours]	Reference Chapter/ Additional Reading	Teaching Methodology to be used	Active Learning Activities	Evaluation parameter
1	1.1	4	Introduction, Nature and Scope of Operations Research, Convex Sets and Convex Functions and their properties Lagrange´s Theory and examples	Ch# 24	PPT, Chalk& Talk	For Slow Learner: Students must solve some examples given by teacher after completion of unit.	Assignment 1

Semester: IX				Academic Year: 2019-20			
			Subject	:060090904 Advanced	Operation Research		
1.3		4	Kuhn-Tucker conditions and examples			For Advanced Learner: Students will able to	
	1.4	4	Search Techniques-One Variable and Several Variables based examples			interpret and formulate mathematical model to solve non- Linear	
	1.5	3	Pontryagin's Maximum Principle and its applications			programming.	
Dyna	<mark>mic Pr</mark>	ogra	amming and its Application [12 ho	urs]			
2	2.1	4 4 4	Introduction, Deterministic processes, Discrete Optimization, Allocation and Assortment Problem Sequential Discrete Optimization, Long-Term Planning Problem, Multi-Stage Decision Process Application of Dynamic Programming in Production Scheduling and routing problems	Ch# 22 J. K. Sharma, Operations Research	PPT, Chalk& Talk	For Slow Learner: Students must solve some examples given by teacher after completion of unit. For Advanced Learner: Students can recognize model to convert Dynamic programming.	Presentation, Assignment 2 Unit Test 1,2 Internal Exam
Ouei	ing Th	eory	and Inventory Models [18 hours]				
3	3.1	3	Basic Structures of Queuing Models			For Slow Learner: Students must solve some	
	3.2	4	Poisson Queues-M/M/1, M/M/C for finite and infinite queue length	Ch# 14, 15, 16 J. K. Sharma, Operations Research	PPT, Chalk& Talk	examples given by teacher after completion of unit.	Presentation, Assignment 3 Unit Test 3
	3.3	4	Non-Poisson Queue-M/G/1, Machine Maintenance (Steady State)			For Advanced Learner: Students can solve various Queuing and	

Semes	Semester: IX			Integrated M.Sc. Mat :060090904 Advanced		Academic Year: 2019-20		
	3.4 3.5	4	Inventory Control-Deterministic including price breaks and Multi- item with constraints Probabilistic (with and without lead time)			Inventory models		
Goa	l Progr	amn	ning and Geometric Programming	[12 hours]				
	4.1	4	Introduction, Difference between LP and GP approach, Concept of Goal Programming			For Slow Learner: Students must solve some examples given by		
4	4.2	4	Graphical solution-method of Goal Programming	Ch# 8, 24 J. K. Sharma, Operations Research	PPT, Chalk& Talk	teacher after completion of unit. For Advanced Learner:	Assignment 4	
	4.3	4	Modified Simplex method of Goal and Geometric Programming			Students will able to solve real world problem using technique of Goal Programming.		

Text book:

1. J. K. Sharma, "Operations Research–Theory and Application", 4th Edition, Macmillan Publishers India Ltd.

Reference books:

- 1. Beale, E. M. L. and Mackley, L., "Introduction to Optimization", John Wiley, 1988.
- 2. Joshi, M. C. and Moudgalya, K., "Optimization: Theory and Practice", Narosa, New Delhi, 2004.
- 3. P SankaraIyer, Operation Research–Sigma Series, Tata McGraw-Hill Companies.
- 4. Frederick S. Hilliesr and Gerald J. Liberman, Introduction to Operation Research, The McGraw-Hill Companies.

Semester: IX

Integrated M.Sc. Mathematics Subject :060090904 Advanced Operation Research Academic Year: 2019-20

Course Objectives and Course Outcomes Mapping:

To Identify and develop Linear programming problem of operational research models from the verbal description of the real system: CO1, CO2, CO3, CO4, CO5, CO6.

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes					
		C01	CO2	CO3	CO4	CO5	CO6
1	Non-Linear Programming	\checkmark				~	\checkmark
2	Dynamic Programming and its Application		~			~	~
3	Queuing Theory and Inventory Models			~		\checkmark	\checkmark
4	Goal Programming and Geometric Programming				~	\checkmark	\checkmark

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research. **PO3: Breadth**

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

Semester: IX

Integrated M.Sc. Mathematics Subject :060090904 Advanced Operation Research Academic Year: 2019-20

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes mapping:

Programme Outcomes			Course o	outcomes		
	CO1	CO2	CO3	CO4	CO5	CO6
P01	\checkmark	\checkmark	\checkmark	\checkmark		
P02		\checkmark	\checkmark	\checkmark	\checkmark	✓
P03			\checkmark	\checkmark		
P04					\checkmark	\checkmark

